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An existing solver, interDyMFoam, has been used as a basis for this project. The figure shows physical
phenomena that are taken into account for the original solver and modified one. Heat exchange has
been introduced adding two main features: computation of temperature field and temperature dependent
fluid properties such as viscosity and density.

Algorithm for the numerical model implemented into a CFD code.
Parts in italic font represent changes to the original solver,
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Mathematical Model

a) MODEL DESIGN b) DEFINITION & EXECUTION OF DOE c) APPLICATION OF RSM (Work in progress)
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Scope F{E mode FRONTIER The rate of entrapped air (R) has been calculated
Identification of the relevant process parameters l In this phase of project, modeFRONTIER® has been used by dividing the final volume of air (Vair) respect the
which will constitute the input variables for DOE é" as the basis for the DOE planning but not for DOE execution. final total volume (Vtot). After inserting these values
and parameterizing the model as a function of DOE definition IN ModeFRONTIER®, it has been possible to apply
these. . . . . Response Surface Methodology (RSM) which
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